Two Studies of Specification Error in Models for Categorical Latent Variables
نویسندگان
چکیده
منابع مشابه
Two Studies of Specification Error in Models for Categorical Latent Variables
This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as well as sample reallocation to latent classes. The ...
متن کاملThe Comparison of Two Models for Evaluation of Pre-internship Comprehensive Test: Classical and Latent Trait
Introduction: Despite the widespread use of pre-internship comprehensive test and its importance in medical students’ assessment, there is a paucity of the studies that can provide a systematic psychometric analysis of the items of this test. Thus, the present study sought to assess March 2011 pre-internship test using classical and latent trait models and compare their results. Methods: In th...
متن کاملLinear latent structure analysis and modelling of multiple categorical variables
Linear latent structure analysis is a new approach for investigation of population heterogeneity using high-dimensional categorical data. In this approach, the population is represented by a distribution of latent vectors, which play the role of heterogeneity variables, and individual characteristics are represented by the expectation of this vector conditional on individual response patterns. ...
متن کاملCorrecting for Measurement Error in Latent Variables Used as Predictors.
This paper represents a methodological-substantive synergy. A new model, the Mixed Effects Structural Equations (MESE) model which combines structural equations modeling and item response theory is introduced to attend to measurement error bias when using several latent variables as predictors in generalized linear models. The paper investigates racial and gender disparities in STEM retention i...
متن کاملEstimation of latent Gaussian ARMA models for categorical behaviour data
We consider the tting of latent Gaussian models to categorical time series of cow feeding data. We derive a spectral quasi-likelihood for the data, and compare it with least squares ts to autocorrelations and MCMC estimators of the parameters in thresholded ARMA processes. We show that the spectral method is more e cient than least squares and far faster than MCMC.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural Equation Modeling: A Multidisciplinary Journal
سال: 2011
ISSN: 1070-5511,1532-8007
DOI: 10.1080/10705511.2011.582016